Поиск в словарях
Искать во всех

Физический энциклопедический словарь - эффективный заряд.ренормализационная группа.

 

Эффективный заряд.ренормализационная группа.

эффективный заряд.ренормализационная группа.
Процедура перенормировки придала квант. электродинамике черты логич. замкнутости. Однако даже в этой теории проблема самосогласованности не может считаться решённой. Одно из усложнений простейших диаграмм Фейнмана (рис. 1,2) состоит в том, что каждая

из входящих в них вершин типа изображённых на рис. 4 и 5 может быть дополнена диаграммами более высоких порядков (рис. 8). В сумме они образуют т. н. вершинную часть (своего рода формфактор эл-на) — нек-рую ф-цию Е(m*) (на рис. 8 изображённую в виде заштрихованного кружка), зависящую от эфф. массы m* (m*2с2=|Q2|, где Q2квадрат передачи четырёхмерного импульса эл-ном фотону) виртуального фотона и представляющую собой (после проведения перенормировки) ряд по степеням заряда е. Ф-ция Е(m*), т. о., играет роль эффективного заряда, зависящего от расстояния, на к-ром происходит вз-ствие. (Согласно соотношению неопределённостей, большая величина квадрата переданного 4-пмпульса

соответствует малым расстояниям, и наоборот.)

Условие самосогласованности перенормировки приводит к дифф. ур-нию для ф-цин Е (m*):

где (Е) имеет вид ряда по Е, определяемого диаграммами рис. 8. В частности, для диаграммы 8,a =0, а для суммы диаграмм 8, б — д (в пределе m*>>mе, где mемасса эл-на) (E)=(1/Зћc)Е3. Простой подстановкой можно проверить, что решением ур-ния (9) с таким (Е) будет

Гл. особенность выражения (10) состоит в том, что с ростом m* (с уменьшением расстояния) эфф. заряд растёт. Это и есть рассмотренный выше эффект экранировки заряда вакуумом. При массе m*=mеез/2 знаменатель выражения (10) обращается в нуль, а сам заряд становится бесконечно большим. В результате появляется лишённое физ. смысла ограничение на величину передачи 4-импульса, т. е. квант. электродинамика оказывается несамосогласованной, хотя это проявляется при фантастически высоких энергиях (~10280 эВ!), превосходящих энергию Вселенной. Однако как только заряд становится большим, неправомерно ограничиваться первыми слагаемыми в разложении (Е), а необходимо рассматривать весь ряд. Из-за асимптотич. хар-ра ряда теории возмущений по Е сумма его бесконечно велика при любом значении Е. В математике разработаны методы обращения с подобными рядами и сопоставления с ними конечных величин, но для этого необходимы какие-то дополнит. сведения о св-вах ф-ций (E). Т. о., вопрос самосогласованности квант. электродинамики остаётся открытым.

Из изложенного выше следует, что формальное использование метода возмущений порождает определённые трудности. Даже введение в теорию новой фундам. постоянной (имеющей смысл фундаментальной длины) либо путём «размазывания» вз-ствия по нек-рой области пространства-времени (см. Нелокальная теория поля), либо путём перехода к квантованному пространству-времени (см. Квантование пространства-времени) не устраняет этого дефекта теории возмущений, если продолжать пользоваться её традиц. формой. Хотя все диаграммы становятся конечными, ряд для ф-ции  остаётся бесконечным асимптотич.

рядом и по-прежнему неизвестно, как определить его сумму, т. е. выяснить хар-р поведения зфф. заряда на малых расстояниях. Подобная же проблема самосогласованности остаётся и в объединённой теории слабого и эл.-магн. вз-ствий (см. Слабое взаимодействие).

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):